XPD codon 751 polymorphism, metabolism genes, smoking, and bladder cancer risk.
نویسندگان
چکیده
Cigarette smoking is the main risk factor for bladder cancer, accounting for at least 50% of bladder cancer in men. Cigarette smoke is a rich source of arylamines, which are detoxified by the NAT2 enzyme and activated by the NAT1 enzyme to highly reactive species that can form bulky adducts on DNA. DNA damage from such adducts is mainly repaired by the nucleotide excision repair pathway, in which the XPD protein functions in opening the DNA helix. We hypothesized that an XPD codon 751 polymorphism (Lys-to-Gln amino acid change) could affect the repair of smoking-induced DNA damage and could be associated with bladder-cancer risk. We also hypothesized that allelic variants of the NAT1 and NAT2 genes might modify the effect of the XPD codon 751 polymorphism on smoking-associated bladder-cancer risk. We determined the XPD codon 751 genotype for 228 bladder-cancer cases and 210 controls who were frequency-matched to cases by age, sex, and ethnicity, and we used our previously published data on the NAT1 and NAT2 genotypes for these same individuals (J. A. Taylor et al., Cancer Res., 58: 3603-3610, 1998). We found a slight decrease in risk for the XPD codon 751 Gln/Gln genotype (adjusted odds ratio: 0.8; 95% confidence interval: 0.4-1.3) compared with subjects with the Lys/Lys or Lys/Gln genotypes. The analysis with smoking showed that smokers with the Lys/Lys or Lys/Gln genotypes were twice as likely to have bladder cancer than smokers with the Gln/Gln genotype (test of interaction P = 0.03). The combined presence of the NAT1/NAT2 high-risk genotype and the XPD Lys/Lys or Lys/Gln genotypes ignoring smoking had an odds ratio that was only slightly higher than expected, assuming no genotype-genotype interaction (P = 0.52). We found little evidence for a gene-gene-exposure, three-way interaction among the XPD codon 751 genotype, smoking, and the NAT1/NAT2 genotype.
منابع مشابه
Concordance of multiple analytical approaches demonstrates a complex relationship between DNA repair gene SNPs, smoking and bladder cancer susceptibility.
Study results of single nucleotide polymorphisms (SNPs) and cancer susceptibility are often conflicting, possibly because of the analytic challenges of testing for multiple genetic and environmental risk factors using traditional analytic tools. We investigated the relationship between DNA repair gene SNPs, smoking, and bladder cancer susceptibility in 355 cases and 559 controls enrolled in a p...
متن کاملSignificant association of XPD codon 312 single nucleotide polymorphism with bladder cancer susceptibility in Taiwan.
BACKGROUND The DNA repair gene xeroderma pigmentosum group D (XPD), an important caretaker of the overall genome stability, is thought to play a major role in the development of human malignancy. Polymorphic variants of XPD, at codon 312 (rs1799793), 751 (rs13181) and promoter-114 (rs3810366), were chosen to be studied for their association with bladder cancer susceptibility in a central Taiwan...
متن کاملPolymorphisms of the DNA repair genes XRCC1, XRCC3, XPD, interaction with environmental exposures, and bladder cancer risk in a case-control study in northern Italy.
Tobacco smoking and occupational exposures are the main known risk factors for bladder cancer, causing direct and indirect damage to DNA. Repair of DNA damage is under genetic control, and DNA repair genes may play a key role in maintaining genome integrity and preventing cancer development. Polymorphisms in DNA repair genes resulting in variation of DNA repair efficiency may therefore be assoc...
متن کاملDNA repair gene XRCC1 and XPD polymorphisms and risk of lung cancer in a Chinese population.
X-ray repair cross-complementing group 1 (XRCC1) and xeroderma pigmentosum group D (XPD) are mainly involved in base excision repair (BER) and nucleotide excision repair (NER) of DNA repair pathways, respectively. Polymorphisms of DNA repair gene XRCC1 and XPD has recently been identified, and there is a growing body of evidence that these polymorphisms may have some phenotypic significance. To...
متن کاملPterygium and genetic polymorphisms of the DNA repair enzymes XRCC1, XPA, and XPD
PURPOSE Pterygium is an ultraviolet (UV) related disease. UV radiation can produce DNA damage, which is repaired by the DNA repair systems. Among the DNA repair systems, the base excision repair (BER) and nucleotide excision repair (NER) systems are the major ones involved in repairing UV-induced DNA damage; X-ray repair cross complementary 1 (XRCC1) and human 8-oxoguanine DNA glycosylase 1 (hO...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology
دوره 11 10 Pt 1 شماره
صفحات -
تاریخ انتشار 2002